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Wind Power Capacity (MW)

70,000

60,000

50,000

40,000

30,000

20,000

10,000

4,147 4,557

2001

Cumulative Capacity

- Annual Capacity Installations

61,110 61,327
1

60,012 [

- 1Q Capacity Installations

. 2Q Capacity Installations

3Q Capacity Installations

- 4Q Capacity Installations

Hourly Wind Generation [MWh]

6,222 6,619

2002 2003 2004

9000

8000

7000

2]
(=}
(=}
o

MISO Hourly Wind Power - January 2012

0

48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

Source: AWEA 2014, MISO 2012




Motivation A & \
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* The U.S. Department of Energy’s vision is to supply 20% of T~

electricity consumption from wind energy by 2030.

* Increase in variability and uncertainty
» Forecasting wind power

Challenges

* Increase operating reserves

==zl © Stochastic Programming
Solutions




Why Stochastic Programming?

= \Weather-driven renewables can be difficult to forecast and increase the uncertainty in
the electric power grid.

= Stochastic programming could serve as a tool to address the increased uncertainty in
power system and electricity market operations.

= Stochastic programming is a powerful tool in dealing with uncertainty, but it has
advantages and disadvantages.

+

is based on axioms of foundational decision theory
considers uncertainty holistically rather than focusing on worst case scenarios
can effectively hedge against randomness

* requires probabilistic inputs which may be hard to obtain or estimate
computationally hard to solve
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A
Stochastic Unit Commitment Problem

Minimize {fuel cost + start-up cost + load shedding penalty}

Decision Variables Constraints
First stage: « Load balance
Unit on/off * Min up-time/down-time
N  Ramp up/down
Second stage: * Transmission limits
Thermal dispatch - Generation capacity limits

Wind dispatch

o  Spinning reserves
Transmission flow P 9
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Two-stage Stochastic Unit Commitment Problem

T T
min )20 e w4 +c, Y Y 8,

ux,fwho se5 =1 i€l =1 neN

st. ux,f,who€C,s€S
Cup=u, Vi Vs€SrE{L.. T} | A

scenarios

Unit on/off
Generation output
Transmission flow
Wind dispatch
Start-up cost

®» > T N % =

Load shedding amount

o

» - Load shedding penalty

p, - Probability of scenario s
S: Scenario set

I: Set of thermal generators
T : Number of periods

C, : Technological constraints



Two-stage model vs. Multi-stage model

Dynamic decisions X
History dependency X
#Binary Variables T x|l
\_
o



Two-stage model vs. Multi-stage model

Two-stage Multi-stage

Dynamic decisions X v

History dependency X v

#Binary Variables T x|l (27-1) x |l
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Two-stage model vs. Multi-stage model

Two-stage Multi-stage
Dynamic decisions X v
History dependency X v
#Binary Variables T x|l (27-1) x |l
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Two-stage model vs. Multi-stage model

Two-stage “Bucket” Multi-stage
Dynamic decisions X v v
History dependency X X v
#Binary Variables T x|l BxTx|l (27-1) x |l
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N
Alternative Approach with “Buckets”

= Stochastic programming models tend to result in better policies with more

scenarios, capturing the full range of uncertainty.

= To solve the problem with a large number of scenarios (w/o forcing a tree

structure) while capturing the multi-stage decision process, we consider a new

\

approach:

-~

» Put scenatrios into “buckets” according to
1. their deviation from the average forecast (D)
2. their percentiles (P)

» Enforce the “non-anticipativity” constraints for “buckets”

as opposed to across all scenarios

(U )

A 11




A
Stochastic Unit Commitment Problem

T T
min EPSEE[&(XQW;‘; +hy+c, y ¥ 0,

wx,fwhd  se5 1=l el t=1 nEN } Across
“buckets’
u,x, f,w,h,0€C.,s €S

S.L.

[ u'’ = ulbt Vi, VsE S, t & {1,...,T}, b= B(s,t) J

it

B: Set of buckets
B(s,t): Bucket assignment of scenario s in period 7.



“Bucket” Approach

= Tradeoff
— More variables versus flexibility
= Advantages of buckets
— Captures multi-stage decision process
* no need to enforce formal tree structure

— Takes into account extreme scenarios

« No scenario reduction Wind i
— May reduce computational burden High
* relaxation of traditional 2-stage formulation Avg.
Low
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Bucket” Example
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Solution Tool

We use Sandia National Laboratories’ optimization tool Coopr, in particular PySP
(Python-based Stochastic Programming) modeling and solver library [Watson et al.

2012]. The tool can solve the problem in two ways:
— Extensive form (EF)
— Progressive Hedging (PH) [Rockafellar and Wets 1991]
* Scenario-based decomposition scheme
* Relaxation of non-anticipativity constraints
* Has been used for unit commitment [e.g. Takriti et al. 1996]

* A heuristic algorithm

ok 16



Problem setting and computational platform

= Hourly decisions over a day

= 4 buckets in each time period

= Divide the time horizon into 6 time blocks
= 1,000 wind forecasts [EWITS]

Progressive Hedging
= Cost proportional penalty factor p
— A is the fraction
= MIP gapy
= # of iterations before fixing, p
= Enable Watson-Woodruff extensions
= Termdiff — termination criteria for PH

Computational Platform

Wind forecast [percentage of capacity]

|
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Figure: 100 Scenarios

= 2.6 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory

= Coopr 3.3.7114
= Solver: CPLEX 12.5
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lllustrative 6-Bus System

Replaced with a
wind unit, able to

provide 30% of
daily load

@
G3
* .
6-Bus system™ with
« 2 thermal generators

- 3loads
Bus Unit Cost Coefficients Pmax Pmin Ini. Min | Min Ramp Start Fuel
No. U b c MW) | (MW) | State | Off | On | (MW/h) Up Price
(MBtu/ (MBtu/ (h) m | M (MBtu) /
MW) MW?2) MBtu)
Gl 1 176.95 13.51 0.0004 220 100 4 4 4 55 10 1
G2 2 129.98 32.63 0.001 100 10 3 3 2 50 200 1

* The details of the system and parameters are available at: http://motor.ece.iit.edu/data/

18



6-Bus Results |

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
100 60,396
500 60,756
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6-Bus Results |

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
100 60,396
500 60,756

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 6-BUS SYSTEM

EF Two-stage

Instances  Solution Cost ($)  Run Time (sec) Best Bound ($) %Gap
100(D)

100(P) 62,800 79 62,703 0.15

500(D)

500(P) 63,306 1,505 63,041 0.42

MIP gap = 0.5%
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6-Bus Results |

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
100 60,396
500 60,756

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 6-BUS SYSTEM

EF Two-stage
Instances  Solution Cost ($)  Run Time (sec) Best Bound ($) %Gap
100(D)
100(P) 62,800 79 62,703 0.15
500(D)
500(P) 63,306 1,505 63,041 0.42
MIP gap = 0.5%
SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 6-BUS SYSTEM
PH Two-stage
Instances  Solution Cost ($) Run Time (sec)  #lterations
100(D)
100(P) 62,771 174 14
500(D)
500(P) 63,278 1,377 12

A =0.5,v=0.03, p = 3, termdiff = le-4, MIP gap for extensive form = default
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6-Bus Results |

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
100 60,396
500 60,756

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 6-BUS SYSTEM

EF Two-stage Bucket

Instances  Solution Cost ($)  Run Time (sec) Best Bound ($) %Gap  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap
100(D) 62,285 140 62,206 0.13

100(P) 62,800 ” 62,703 0.15 62.459 13 62.340 0.19

500(D) 62,897 2,365 62,589 0.49

500(P) 63,306 1,505 63,041 0.42 62.750 2,039 62.478 0.43

MIP gap = 0.5%

SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 6-BUS SYSTEM

PH Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec)  #Iterations  Solution Cost ($) Run Time (sec)  #lterations
100(D) 62,345 449 21
100(P) 62,771 . . 63,356 912 51
500(D) 63,253 4,416 47
500(P) 63,278 1,377 12 63,247 3,942 40

A =0.5,v=0.03, p = 3, termdiff = le-4, MIP gap for extensive form = default
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6-Bus Results |

PERFECT HINDSIGHT SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
100 60,396
500 60,756

SOLUTION QUALITY AND RUN TIMES FOR EXTEN ORM FOR 6-BUS SYST

0.8-0.9% decrease

EF Two-stage / / Bucket

Instances  Solution Cost ($)  Run Time (semound ($) %Gap  Solution Cost ($) BATime (sec)

Best Bound ($)  %Gap

100(D) / 62,285 / 140 62,206 0.13
100(P) ( 62,800 ] 7 62,703 0-15 ( 62,459) 113 62.340 0.19
500(D) 62,897 2,365 62,589 0.49
500(P) L 63,306 J 1,505 63,041 0.42 L 62.750 J 2,039 62,478 0.43

MIP gap = 0.5%

SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 6-BUS SYSTEM

PH Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec)  #Iterations  Solution Cost ($) Run Time (sec)  #lterations
100(D) 62,345 449 21
100(P) 62,771 . . 63,356 912 51
500(D) 63,253 4,416 47
500(P) 63,278 1377 12 63,247 3,942 40

A =0.5,v=0.03, p = 3, termdiff = le-4, MIP gap for extensive form = default
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6-Bus Results Il - Deterministic

DETERMINISTIC SOLUTIONS FOR 6-BUS SYSTEM

#Scenarios  Solution Cost ($)
100 59412
500 66,905

Added reserves
to cover 95% of
the wind
scenarios in
every hour

°{ _ 20



6-Bus Results Ill - Policy

SOLUTION COSTS ($) AS A RESULT OF POLICY ANALYSIS FOR DETERMINISTIC, TWO-STAGE AND BUCKET APPROACH MODELS FOR 6-BUS SYSTEM

Deterministic Two-stage Bucket
Instances EF PH EF PH
100(D) 62,817 62,796
100(P) 64,124 63,306 63,306 62.837  63.616
500(D) 62,717 63,054
500(P) 63,918 63,089 63,089 62720  63.199

=

Added reserves
to cover 95% of
the wind
scenarios in
every hour

oji- 21



IEEE RTS-96 24-Bus

138%V

BUS m
Synch.
e [ FOms

Figure 1 - IEEE One Area RTS-96

24-Bus
32 generators — thermal, hydro

34 lines

17 loads

Nuclear plant in Bus 21 is
replaced with a wind unit (can
provide 30% of the daily load

on average)

[IEEE Reliability Test System 1996]
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24-Bus Results

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
50 1,225,991
100 1,240,284

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF Two-stage

Instances ~ Solution Cost ($) Run Time (sec)  Best Bound ($)  %Gap
50(D)

S0(P) 1,291,588 162 1,285,274 0.49

100(D)

100(P) 1,308,497 440 1,305,396 0.24

MIP gap = 0.5%
SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 24-BUS SYSTEM

PH Two-stage

Instances  Solution Cost ($) Run Time (sec)  #lterations
50(D)

50(P) 1,292,777 233 |
100(D)

100(P) 1,308,497 512 1

A =0.25, v =0.03, i = 1 (Two-stage), n = 3 (Bucket), termdiff = 0.4, MIP gap for extensive form = 0.1%
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PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
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100 (1240284

OLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF / Two-stage

Instances _ Solution QgSt ($) Run Time (sec) Best Bound ($)  %Gap
S50(D)

50(P) ( 1,291,588 ] 162 1,285,274 0.49
100(D)
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24-Bus Results

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
50 1,225,991
100 1,240,284

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap
50(D) 1,279,894 541 1,275,468 0.35

50(P) 1,291,588 L 1,285,274 0.49 1.279.660 671 1.273.969 0.44

100(D) 1,295,581 2,418 1,291,348 0.33

100(P) 1,308,497 440 1,305,396 0.24 1,294,426 3414 1.290.313 032

MIP gap = 0.5%
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24-Bus Results

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
50 1,225,991
100 1,240,284

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF Two-stage Bucket
Instances  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap
50(D) 1,279,894 541 1,275,468 0.35
50(P) 1,291,588 L 1,285,274 0.49 1.279.660 671 1.273.969 0.44
100(D) 1,295,581 2,418 1,291,348 0.33
100(P) 1,308,497 440 1,305,396 0.24 1,294,426 3414 1.290.313 032
MIP gap = 0.5%
SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 24-BUS SYSTEM

PH Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec)  #lterations  Solution Cost ($) Run Time (sec)  #lterations

50(D) 1,281,393 438 3

50(P) 1,292,777 233 1 1,278,987 437 2

100(D) 1,295,192 1,088 3

100(P) 1,308,497 >12 : 1,294,390 1,267 2

A =0.25, v =0.03, i = 1 (Two-stage), n = 3 (Bucket), termdiff = 0.4, MIP gap for extensive form = 0.1%
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24-Bus Results

PERFECT HINDSIGHT SOLUTIONS FOR 24-BUS SYSTEM

#Scenarios  Average Solution Cost ($)
50 1,225,991
100 1,240,284

SOLUTION QUALITY AND RUN TIMES FOR EXTENSIVE FORM FOR 24-BUS SYSTEM

EF Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap  Solution Cost ($) Run Time (sec) Best Bound ($)  %Gap
50(D) 1,279,894 541 1,275,468 0.35

50(P) 1,291,588 [ 162 ] 1285274 049 1,279,660 ( 671 ] 1273969 044

100(D) 1,295,581 2,418 1,291,348 0.33

100(P) 1,308,497 L 440 J 1,305,3% 024 1,204,426 L3,414 J 1200313 032

MIP gap = 0.5%
SOLUTION QUALITY AND RUN TIMES FOR PROGRESSIVE HEDGING FOR 24-BUS SYSTEM

PH Two-stage Bucket

Instances  Solution Cost ($) Run Time (sec)  #lterations  Solution Cost ($) Run Time (sec)  #lterations
50(D) 1,281,393 438 3
50(P) 1,292,777 [ 233 ] l 1,278,987 [ 437] 2
100(D) 1,295,192 1,088 3
100(P) 1,308,497 L >12 J : 1,294,390 L 1,267 J 2

A =0.25, v =0.03, i = 1 (Two-stage), n = 3 (Bucket), termdiff = 0.4, MIP gap for extensive form = 0.1%

23




24-Bus Results
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0.9-1% decrease
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A =0.25, v =0.03, i = 1 (Two-stage), n = 3 (Bucket), termdiff = 0.4, MIP gap for extensive form = 0.1%

23




Outline

[ Conclusion and Future Work



Conclusions and Future Work

= The methodology proposed improves on existing technology in three ways:
—Lower cost solutions through increased flexibility,
— Greater robustness in solutions by enabling expanded scenario representations,

—Higher computational efficiency by reducing decision tree complexity.
= Computational results present up to 1% decrease in operational costs compared to
two-stage formulation.
= Future work includes:
—Computational effort is a challenge. Potential solutions are:
* Parallel computing,
* Other decomposition techniques.
—Developing methods for more effective “bucketing” of scenarios.
—Solving larger problems with more scenarios.
—Investigating potential for improved pricing and financial incentives under stochastic
scheduling.
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